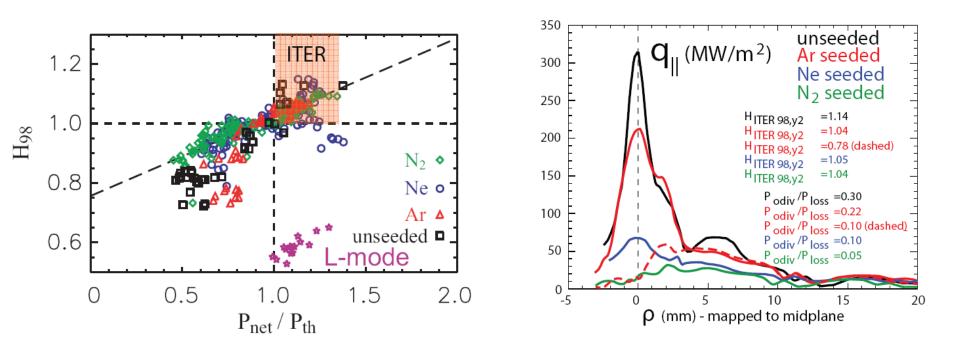

Compatibility of Radiative Divertor Operation with High Confinement Hmode Plasmas A. Loarte, R. Maingi, J.-W. Ahn, ...

Compatibility of radiative divertor operation with high confinement H-mode plasmas (I)

Power to access good confinement in ITER subject to significant uncertainties :


- ✓ Additional heating power required to access H-mode (L-H transition)
- ✓ Margin above L-H transition power to reach H ~ 1 in stationary conditions
- ✓ Role of core/edge radiation on power requirement
- Dynamics of edge power flow evolution following H-mode transition (P_α) JET- Sartori – PPCF 2004

Compatibility of radiative divertor operation with high confinement H-mode plasmas (II)

- ➤ Experiments in C-Mod have demonstrated that plasma confinement is correlated with P_{net}/P_{th} and that high P_{rad}/P_{loss} can be achieved with H₉₈ ~ 1 with low Z seeding
 ➤ Experiments in C-mod carried out in EDA H-mode → role of ELMs not assessed in experiments

Reinke PSI'10, Hughes IAEA'10, Loarte APS'10

Experimental plan

Plasma conditions in NSTX in ELMy H-mode with large ELMs

- 1. Establish H-mode at medium $\langle n_e \rangle$ with repetitive Type I ELMs and do a scan of P_{input} in these conditions to determine $H_{98}(P_{net})$
- 2. Establish radiative divertor with N₂ and/or Neon divertor puffing with at least $P_{rad}/P_{loss} > 0.7$ or $P_{div-out}/P_{loss} < 0.2$
- 3. Scan P_{input} in radiative divertor conditions to determine $H_{98}(P_{net})$ and $H_{98}(P_{rad}/P_{loss})$ with N_2 and/or Neon.
- 4. Repeat some discharges with high Z impurity seeding (Ar)
- 5. If time allows repeat experiments at higher/lower I_p